
Panels and Widgets – Part

Two
In the previous chapter, we built the basics of the panels and widgets system. You
can now create panels, can drag widgets into them, and can see the results on the
front-end of the site.

In this chapter, we will enhance the system letting you customize the widgets and
letting you choose what pages the panels and widgets are visible on.

Widget forms
In the last chapter, we had widgets showing on the front-end, but with a default This
Content Snippet is not yet deined message.

In order to change the message to something more useful, we will need to do more
work in the admin area.

Firstly, when you reload the Panels area of the admin, you'll see that our right panel
widget appears to have vanished. We've recorded it in the database, but have not set
the page to show it on loading.

Edit /ww.plugins/panels/admin/js.js and where the .panel-opener is added to
the h4 of .panel-wrapper, add these highlighted lines:

 widgets_container.appendTo(panel);

 var widgets=panel.data('widgets');

 for(var i=0;i<widgets.length;++i){

 var p=widgets[i];

 var w=buildRightWidget(p);

 w.appendTo(widgets_container);

 if(p.header_visibility)

www.eBookTM.Com

Panels and Widgets – Part Two

[268]

 $('input.widget_header_visibility',w)[0]

 .checked=true;

 }

 $('<br style="clear:both" />').appendTo(panel);

When we created the panels in the JavaScript, we set the wrapper's
data('widgets') with data from the database. This code takes that data and adds
the widgets on-the-ly, when the panel is opened.

Because each widget is different, we need to provide a way to load up external
coniguration forms.

To do this, replace the showWidgetForm() stub function with this:

function showWidgetForm(w){

 if(!w.length)w=$(this).closest('.widget-wrapper');

 var f=$('form',w);

 if(f.length){

 f.remove();

 return;

 }

 var form=$('<form></form>').appendTo(w);

 var p=w.data('widget');

 if(ww_widgetForms[p.type]){

 $('<button style="float:right">Save</button>')

 .click(function(){

 w.find('input,select').each(function(i,el){

 p[el.name]=$(el).val();

 });

 w.data('widget',p);

 updateWidgets(form.closest('.panel-wrapper'));

 return false;

 })

 .appendTo(form);

 var fholder=$('<div style="clear:both;border-bottom:1px solid
#416BA7">loading...</div>').prependTo(form);

 p.panel=$('h4>span.name',form.closest('.panel-wrapper')).eq(0).
text();

 fholder.load(ww_widgetForms[p.type],p);

 }

 else $('<p>automatically configured</p>').appendTo(form);

 $('remove')

 .click(function(){

 if(!confirm('Are you sure you want to remove this widget from
this panel?'))return;

www.eBookTM.Com

Chapter 11

[269]

 var panel=w.closest('.panel-wrapper');

 w.remove();

 updateWidgets(panel);

 })

 .appendTo(form);

 $(', ').appendTo(form);

 $('visibility')

 .click(widget_visibility)

 .appendTo(form);

 $(', ').appendTo(form);

 $(''+(p.disabled?'disabled':
'enabled')+'')

 .click(widget_toggle_disabled)

 .appendTo(form);

}

function widget_toggle_disabled(){}

function widget_visibility(){}

The irst few lines toggle the form closed, if it's already closed.

Then, if a form is provided (we'll get to this in a moment), it is added to a form
element, along with a Save button. The external form is embedded in the element
using jQuery's .load() function, which also runs any scripts in the external form.

If no form is provided, a message is shown saying that the widget is automatically
conigured.

Then, a number of links are added to let you remove, disable, or set the pages that
the widget is active on.

The only link that works at the moment is the remove link, which simply deletes the
widget element, and then updates the panel.

The other links are served by stub functions. We will inish them all before the end of
the chapter!

www.eBookTM.Com

Panels and Widgets – Part Two

[270]

Here's a screenshot showing the widget as it appears now:

When we were initially creating /ww.plugins/panels/admin/index.php, we
added a simple "widget forms" comment block. Now, replace that with this:

// { widget forms

echo 'ww.widgetForms={';

$ws=array();

foreach($PLUGINS as $n=>$p){

 if(isset($p['admin']['widget'])

 && isset($p['admin']['widget']['form_url']))

 $ws[]='"'.$n.'":"'

 .addslashes($p['admin']['widget']['form_url']).'"';

}

echo join(',',$ws);

echo '};';

// }

This builds up a list of panel forms and echoes them to the browser's HTML:

ww_widgets=[{type:"content-snippet",description:"Add small static HTML
snippets to any panel - address, slogan, footer, image, etc."}];

ww_widgetForms={"content-snippet":"/ww.plugins/content-snippet/admin/
widget-form.php"};

</script>

www.eBookTM.Com

Chapter 11

[271]

So let's create the form. Make the /ww.plugins/content-snippet/admin directory
and add a widget-form.php ile to it:

<?php

require $_SERVER['DOCUMENT_ROOT'].'/ww.admin/admin_libs.php';

// { return content from table if requested

if(isset($_REQUEST['get_content_snippet'])){

 require '../frontend/index.php';

 $o=new stdClass();

 $o->id=(int)$_REQUEST['get_content_snippet'];

 $ret=array('content'=>content_snippet_show($o));

 echo json_encode($ret);

 exit;

}

// }

// { set ID and show link in admin area

if(isset($_REQUEST['id']))$id=(int)$_REQUEST['id'];

else $id=0;

echo '<a href="javascript:content_snippet_edit('.$id.');"

 id="content_snippet_editlink_'.$id.'"

 class="content_snippet_editlink">view or edit snippet';

// }

?>

This is not the end of the ile—we've only just started. It's a large snippet, so I'll
explain just this bit irst.

First, we check that the user is an admin and load up the admin libraries, in case
they're needed.

Then, we check to see if the browser has asked for the content of the snippet. There'll
be more on that in a bit when we talk about the JavaScript part of the ile.

Next, we make sure that an ID has been provided or else set it to 0.

www.eBookTM.Com

Panels and Widgets – Part Two

[272]

Finally, we output a link for the browser to show to the user.

So next, we need to deine what happens when the view or edit snippet link is clicked.

Add the following code to the same ile:

<script>

if(!window.ww_content_snippet)window.ww_content_snippet={

 editor_instances:0

};

function content_snippet_edit(id){

 var el=document.getElementById('content_snippet_editlink_'

 +id);

 ww_content_snippet.editor_instances++;

 var rtenum=ww_content_snippet.editor_instances;

 var d=$('<div><textarea style="width:600px;height:300px;" '

 +'id="content_snippet_html'+rtenum+'" '

 +'name="content_snippet_html'+rtenum+'"></textarea>'

 +'</div>');

 $.getJSON(

 '/ww.plugins/content-snippet/admin/widget-form.php',

 {'get_content_snippet':id},

 function(res){

 d.dialog({

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Chapter 11

[273]

 minWidth:630,

 minHeight:400,

 height:400,

 width:630,

 modal:true,

 beforeclose:function(){

 if(!ww_content_snippet.rte)return;

 ww_content_snippet.rte.destroy();

 ww_content_snippet.rte=null;

 },

 buttons:{

 'Save':function(){

 // leave empty for now

 },

 'Close':function(){

 d.remove();

 }

 }

 });

 ww_content_snippet.rte=CKEDITOR.replace(

 'content_snippet_html'+rtenum,

 {filebrowserBrowseUrl:"/j/kfm/",menu:"WebME"}

);

 ww_content_snippet.rte.setData(res.content);

 });

}

</script>

What this does is create a dialog, add an instance of the CKeditor rich text editor to
it, and then request the snippet content from the server (see the previous PHP section
for that).

Note the steps we've taken with CKeditor. At the time of writing, CKeditor 3 is still
not complete—the documentation on the main website, for example, has hardly
anything in the JavaScript section.

Destroying an instance of CKeditor dynamically is still not absolutely safe, so what we
do is that when a dialog is closed, we do what we can using the .destroy() method
provided by CKeditor. To be extra sure, we don't reuse a destroyed instance, but we
always initiate a new one (see the use of editor_instances in the code).

www.eBookTM.Com

Panels and Widgets – Part Two

[274]

The previous block of code will render this to the screen when the view or edit
snippet link is clicked:

You can now insert any HTML you want into that.

Saving the snippet content
The code I've shown doesn't include the Save function. Let's add that now.

Edit the JavaScript part of the ile, and replace the line // leave empty for now
with this:

 var html=ww_content_snippet.rte.getData();

 $.post('/ww.plugins/content-snippet/admin/'

 +'widget-form.php',

 {'id':id,'action':'save','html':html},

 function(ret){

 if(ret.id!=ret.was_id){

 el.id='content_snippet_editlink_'+ret.id;

 el.href='javascript:content_snippet_edit('

 +ret.id+')';

www.eBookTM.Com

Chapter 11

[275]

 }

 id=ret.id;

 var w=$(el).closest('.widget-wrapper');

 var wd=w.data('widget');

 wd.id=id;

 w.data('widget',wd);

 updateWidgets(w.closest('.panel-wrapper'));

 d.remove();

 },

 'json'

);

The Save functionality sends the RTE contents to the server.

On the server, we will save it to the database. If an ID was provided, it will be an
update; otherwise, it will be an insert.

In either case, data including the ID is then returned to the client. If the database
entry was an insert, the widget is updated with the new ID.

The panel is then saved to the server in case any of its data (for instance, the widget
data in the case where an ID was created) was changed.

In the PHP section, add this to the top of the ile, below the require line:

// { save data to the database if requested

if(isset($_REQUEST['action']) && $_REQUEST['action']=='save'){

 $id=(int)$_REQUEST['id'];

 $id_was=$id;

 $html=addslashes($_REQUEST['html']);

 $sql="content_snippets set html='$html'";

 if($id){

 $sql="update $sql where id=$id";

 dbQuery($sql);

 }

 else{

 $sql="insert into $sql";

 dbQuery($sql);

 $id=dbOne('select last_insert_id() as id','id');

 }

 $ret=array('id'=>$id,'id_was'=>$id_was);

 echo json_encode($ret);

 exit;

}

// }

www.eBookTM.Com

Panels and Widgets – Part Two

[276]

This simply saves the offered data into the database and returns the original ID as
submitted, along with the new one, in case an insert was made and the client-side
code needs to update itself.

With this code in place, you can now edit your content snippets, as can be seen in the
following screenshot:

You can see that I've used the panel on the right-hand side to add an address and the
bottom panel to add some standard footer-type stuff.

You can add as many widgets to a panel as you want.

We are now inished with the Content Snippet plugin.

Renaming widgets
In a busy website, it is a nuisance if you have a load of widgets in panels and are
not sure which one you're looking for. For example, if one of the Content Snippet
widgets is an address, it is better that it says address in the panel, than content
snippet.

We've already added the code that calls the function widget_rename(), when the
widget header is clicked.

www.eBookTM.Com

Chapter 11

[277]

Replace the stub widget_rename() function in /ww.plugins/panels/admin/js.js
with this:

function widget_rename(ev){

 var h4=$(ev.target);

 var p=h4.closest('.widget-wrapper').data('widget');

 var newName=prompt('What would you like to rename the '

 +'widget to?',p.name||p.type);

 if(!newName)return;

 p.name=newName;

 h4.closest('.widget-wrapper').data('widget',p);

 updateWidgets($(h4).closest('.panel-wrapper'));

 h4.text(newName);

}

Very simply put, this sets p to the current widget data, asks for a new name for the
widget, sets p.name equal to that new name, and then saves the widget data again.

In small sites where there're only a few widgets in use, this may seem like overkill,
but in more complex sites, this is necessary.

Widget header visibility
On the front-end, you might want to have Address written above the address section
of the panel on the right.

For Content Snippets, this is simple, as you just need to add it to the HTML that
you're already building.

But, if you're using a different widget, then there may not be an editable section of
HTML. For example, in an RSS reader widget, which simply displays a list of items
from an RSS stream, it would be overkill to add an editor for user-controlled HTML.

www.eBookTM.Com

Panels and Widgets – Part Two

[278]

So, for these cases, we provide a check-box in the widget's header which lets you tell
the server to add a <h4> element before the widget is rendered.

Add this code to the js.js ile, replacing the widget_header_visibility()
stub function:

function widget_header_visibility(ev){

 var el=ev.target,vis=[];

 var w=$(el).closest('.widget-wrapper');

 var p=w.data('widget');

 p.header_visibility=el.checked;

 w.data('widget',p);

 updateWidgets(w.closest('.panel-wrapper'));

}

Similar to the widget renaming section, this simply edits the widget data, saves it,
and updates the visuals.

For the front-end, edit /ww.plugins/panels/plugin.php and add the following
highlighted line:

 foreach($widgets->widgets as $widget){

 if(isset($widget->header_visibility)

 && $widget->header_visibility)

 $h.='<h4 class="panel-widget-header '

 .preg_replace('/[^a-z0-9A-Z\-]/','',$widget->name)

 .'">'.htmlspecialchars($widget->name).'</h4>';

 if(isset($PLUGINS[$widget->type])){

 if(isset($PLUGINS[$widget->type]['frontend']['widget'])){

This will add a <h4> before any widgets you select:

www.eBookTM.Com

Chapter 11

[279]

Notice the address header. Also, notice that I've not added a header to the footer panel.

Disabling widgets
If you have a number of different widgets that you use for different occasions, it is
useful to disable those that you are not currently using, so they don't appear in the
front-end and yet are available to re-enable at any point.

An example of this might be a menu for a restaurant, where the "soup of the day"
revolves based on the day. If there are seven different soups, it's a simple matter to
disable the six that you are not displaying, and each day, enable the next and disable
the previous.

As you can imagine, the admin side code of this is easy, based on the most recent
examples. Edit the admin/js.js ile and replace the widget_toggle_disabled()
stub function with this:

function widget_toggle_disabled(ev){

 var el=ev.target,vis=[];

 var w=$(el).closest('.widget-wrapper');

 var p=w.data('widget');

 p.disabled=p.disabled?0:1;

 w.removeClass().addClass('widget-wrapper '

 +(p.disabled?'disabled':'enabled'));

 $('.disabled',w).text(p.disabled?'disabled':'enabled');

 w.data('widget',p);

 updateWidgets(w.closest('.panel-wrapper'));

}

www.eBookTM.Com

Panels and Widgets – Part Two

[280]

In the admin area, after disabling a panel, here's how it looks:

And on the front-end, we simply return a blank string if the panel is disabled.

To do this, edit the plugin.php and add the highlighted line:

 foreach($widgets->widgets as $widget){

 if(isset($widget->disabled) && $widget->disabled)continue;

 if(isset($widget->header_visibility)

 && $widget->header_visibility)

 $h.='<h4 class="panel-widget-header '

 .preg_replace('/[^a-z0-9A-Z\-]/','',$widget->name)

 .'">'.htmlspecialchars($widget->name).'</h4>';

If the widget is disabled, you simply ignore that widget and carry onto the next
iteration of the loop.

Disabling a panel
Panels are not recorded the same way as widgets, so there's slightly more work
needed.

The JavaScript is basically the same. We already have the links for remove, visibility,
and enable/disable in there, so it's just a matter of adding the functions they call.

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Chapter 11

[281]

Add this function to /ww.plugins/panels/admin/js.js:

function panel_toggle_disabled(i){

 var p=ww_panels[i];

 p.disabled=p.disabled?0:1;

 var panel=$('#panel'+p.id);

 panel

 .removeClass()

 .addClass('panel-wrapper '

 +(p.disabled?'disabled':'enabled'));

 $('.controls .disabled',panel)

 .text(p.disabled?'disabled':'enabled');

 ww_panels[i]=p;

 $.get('/ww.plugins/panels/admin/save-disabled.php?id='

 +p.id+'&disabled='+p.disabled);

}

This function switches classes and the visible text in the panel to toggle its mode
between enabled and disabled, then calls a server-side ile to save the state.

Create the ile /ww.plugins/panels/admin/save-disabled.php to handle the
saving:

<?php

require $_SERVER['DOCUMENT_ROOT'].'/ww.admin/admin_libs.php';

if(isset($_REQUEST['id']) && isset($_REQUEST['disabled'])){

 $id=(int)$_REQUEST['id'];

 $disabled=(int)$_REQUEST['disabled'];

 dbQuery("update panels set disabled='$disabled' where id=$id");

}

echo 'done';

After the enabled link is clicked (below the panel name), the entire panel is then
disabled and is not visible from the front-end.

www.eBookTM.Com

Panels and Widgets – Part Two

[282]

In the admin area, this is indicated by graying out the entire panel:

Because the widget statuses are not changed, re-enabling the panel by clicking on
disabled will bring the panel back to the exact status it had before. For example.,
if half the widgets contained in it were disabled, then the exact same widgets are
disabled and the rest are enabled.

Deleting a panel
Panels are tied in with templates. The panels that appear in the admin area depend
on what is visible in the front-end.

Let's say that you were using one theme which had a footer panel and a right panel.
And then, you switch to a new theme which has a header, left panel, and footer.

Loading a page in the front-end will register the new header and left panels, but will
not remove the obsolete right panel.

Panels don't automatically delete when you switch themes. Because we have not tied
a Smarty parser into the panels system, the CMS does not automatically know if a
panel is no longer needed because it is not in the new skin.

www.eBookTM.Com

Chapter 11

[283]

Add the following function to admin/js.js:

function panel_remove(i){

 var p=ww_panels[i];

 var id=p.id;

 if(!confirm('Deleting this panel '

 +'will remove the configurations of its contained '

 +'widgets. Are you /sure/ you want to remove this? Note '

 +'that your panel will be recreated (without its '

 +'widgets) if the site theme has it defined.'))return;

 $.get('/ww.plugins/panels/admin/remove-panel.php?id='+id,

 function(){

 $('#panel'+id).remove();

 });

}

In this function, we irst get the panel ID.

Next, we verify that the admin means to delete the panel—once it is deleted, the
widget data will also be deleted, so it's important that the admin realizes this.

Finally, we send to the server to do the deletion, and remove the panel element from
the page.

Here is the server-side ile, /ww.plugins/panels/admin/remove-panel.php:

<?php

require $_SERVER['DOCUMENT_ROOT'].'/ww.admin/admin_libs.php';

if(isset($_REQUEST['id'])){

 $id=(int)$_REQUEST['id'];

 dbQuery("delete from panels where id=$id");

}

echo 'ok';

Again, a very simple ile.

We irst check that the requester is an admin, then remove the table row that
corresponds to the panel ID.

Panel page visibility—admin area code
Sometimes, you will want a panel to appear on only a few pages.

For example, you may have a vertical side panel that you want to appear on all
pages, except for one or two pages which need a lot of space, so you want to hide the
panel on those pages.

www.eBookTM.Com

Panels and Widgets – Part Two

[284]

Instead of creating different templates for these pages, you could simply hide
the panels.

To do this, we irst need to select what pages the panel is visible on.

Add the following function to admin/js.js:

function panel_visibility(id){

 $.get('/ww.plugins/panels/admin/get-visibility.php',

 {'id':id},function(options){

 var d=$('<form><p>This panel will be visible in <select '

 +'name="panel_visibility_pages[]" multiple="multiple">'

 +options+'</select>. If you want it to be visible in '

 +'all pages, please choose none to indicate '

 +'that no filtering should take place.</p></form>');

 d.dialog({

 width:300,

 height:400,

 close:function(){

 $('#panel_visibility_pages').remove();

 d.remove();

 },

 buttons:{

 'Save':function(){

 var arr=[];

 $('input[name="panel_visibility_pages[]"]:checked')

 .each(function(){

 arr.push(this.value);

 });

 $.get('/ww.plugins/panels/admin/save-visibility'

 +'.php?id='+id+'&pages='+arr);

 d.dialog('close');

 },

 'Close':function(){

 d.dialog('close');

 }

 }

 });

 });

}

This function is quite large compared to the previous functions, but it is also more
complex.

In this case, we irst retrieve the list of pages already selected from the server and
then show this to the admin.

www.eBookTM.Com

Chapter 11

[285]

The admin selects which pages the panel should be visible on. Click on Save.

This then gets the page IDs of the selected options and saves this to the server.

There are two server-side iles to create. First, the ile to retrieve the list of pages is /
ww.plugins/panels/admin/get-visibility.php:

<?php

require $_SERVER['DOCUMENT_ROOT'].'/ww.admin/admin_libs.php';

function panel_selectkiddies($i=0,$n=1,$s=array(),$id=0,$prefix=''){

 $q=dbAll('select name,id from pages where parent="'.$i

 .'" and id!="'.$id.'" order by ord,name');

 if(count($q)<1)return;

 $html='';

 foreach($q as $r){

 if($r['id']!=''){

 $html.='<option value="'.$r['id'].'" title="'

 .htmlspecialchars($r['name']).'"';

 $html.=(in_array($r['id'],$s))

 ?' selected="selected">':'>';

 $name=strtolower(str_replace(' ','-',$r['name']));

 $html.= htmlspecialchars($prefix.$name).'</option>';

 $html.=panel_selectkiddies($r['id'],$n+1,$s,$id,

 $name.'/');

 }

 }

 return $html;

}

$s=array();

if(isset($_REQUEST['id'])){

 $id=(int)$_REQUEST['id'];

 $r=dbRow("select visibility from panels where id=$id");

 if(is_array($r) && count($r)){

 if($r['visibility'])$s=json_decode($r['visibility']);

 }

}

if(isset($_REQUEST['visibility']) && $_REQUEST['visibility']){

 $s=explode(',',$_REQUEST['visibility']);

}

echo panel_selectkiddies(0,1,$s,0);

First, we make sure (as always) that the request came from an admin.

Next, we deine the panel_selectkiddies() function that builds up an option list
composed of pages in an hierarchical tree fashion.

www.eBookTM.Com

Panels and Widgets – Part Two

[286]

Finally, we retrieve the list of pages that are already selected and display the options
using that list, to mark some as selected.

This could easily be added as a function of the core engine.

The main reason it is not currently in the core engine is that we have one
single use case for it and the core functions should really be functions that
are used multiple times.

If you ind yourself rewriting functionality that exists in other plugins,
then that functionality should be re-factored and added to the core.

When we click visibility under the panel, this is what we get:

Not very user-friendly, is it?

We can improve this by using the jQuery inlinemultiselect plugin, available from
here: http://code.google.com/p/inlinemultiselect/.

The inlinemultiselect plugin, by Peter Edwards, is an enhancement of some work I
did a few years beforehand to make multi-select elements easier to use.

www.eBookTM.Com

Chapter 11

[287]

The version of the ile that I'm using is a slight enhancement of the version on the
Google repository. I've submitted my changes back and am waiting for the changes
to be added to the repository.

In the meantime, you can get my version from Packt, by downloading the code for
this chapter.

I place the ile as /ww.plugin/panels/admin/jquery.inlinemultiselect.js and
then edit the ile /ww.plugin/panels/admin/index.php to link it in (highlighted
lines):

?>

</script>

<script src="/ww.plugins/panels/admin/js.js"></script>

<script src="/ww.plugins/panels/admin/

 jquery.inlinemultiselect.js"></script>

And now, we can amend the admin/js.js ile to use it. Add these highlighted lines
to the end of the $.get() section in panel_visibility():

 });

 $('select').inlinemultiselect({

 'separator':', ',

 'endSeparator':' and '

 });

 });

}

www.eBookTM.Com

Panels and Widgets – Part Two

[288]

And now, the page selection is much more friendly:

You can see what's happened. When the dialog opens, the list of selected pages is
shown inline in the text (you can see the words home and home/test are bold. When
[Change...] is clicked, a pop up appears with the list of pages shown in a check-box
version of a multi-select).

Behind the scenes, the original clumsy multi-select box has been removed and
converted to this nice check-box version.

When submitted, the check-boxes act exactly the same as the multi-select box, so the
server can't tell the difference.

Now, write the save ile, /ww.plugins/panels/admin/save-visibility.php:

<?php

require $_SERVER['DOCUMENT_ROOT'].'/ww.admin/admin_libs.php';

if(isset($_REQUEST['id']) && isset($_REQUEST['pages'])){

 $id=(int)$_REQUEST['id'];

 $json='['.addslashes($_REQUEST['pages']).']';

 dbQuery("update panels set visibility='$json'

 where id=$id");

}

www.eBookTM.Com

Chapter 11

[289]

Again, the server-side code is very simple.

We check that the submitter is an admin, then record what was submitted directly
into the panels table.

Panel page visibility—front-end code
The front-end code is very simple.

Edit the /ww.plugins/panels/plugin.php ile and replace the "is the panel
visible?" comment block with this code:

 // { is the panel visible?

 if($p['disabled'])return '';

 if($p['visibility'] && $p['visibility']!='[]'){

 $visibility=json_decode($p['visibility']);

 if(!in_array($GLOBALS['PAGEDATA']->id,$visibility))

 return '';

 }

 // }

The visibility ield in the table is an array of page IDs. If there are any IDs in the array
and the ID of the current page is not one of them, then the panel is returned blank.

Widget page visibility
The inal piece of the Panels plugin is how to manage widget visibility.

Similar to panels, widgets are not always necessary on every page.

For example, you may have a widget which displays the contents of an online store
basket. This widget should not be shown on a page where the online store's checkout
shows the same list.

Or maybe you have some widgets that you want to only appear on very speciic pages,
such as showing an RSS feed from the local cinema on a page which reviews a ilm.

The script works the same way as the panel visibility code.

Open /ww.plugins/panels/admin/js.js and replace the widget_visibility()
function stub with this:

function widget_visibility(ev){

 var el=ev.target,vis=[];

 var w=$(el).closest('.widget-wrapper');

 var wd=w.data('widget');

www.eBookTM.Com

Panels and Widgets – Part Two

[290]

 if(wd.visibility)vis=wd.visibility;

 $.get('/ww.plugins/panels/admin/get-visibility.php?'

 +'visibility='+vis,function(options){

 var d=$('<form><p>This panel will be visible in <select '

 +'name="panel_visibility_pages[]" multiple="multiple">'

 +options+'</select>. If you want it to be visible in '

 +'all pages, please choose none to indicate '

 +'that no filtering should take place.</p></form>');

 d.dialog({

 width:300,

 height:400,

 close:function(){

 $('#panel_visibility_pages').remove();

 d.remove();

 },

 buttons:{

 'Save':function(){

 var arr=[];

 $('input[name="panel_visibility_pages[]"]:checked')

 .each(function(){

 arr.push(this.value);

 });

 wd.visibility=arr;

 w.data('widget',wd);

 updateWidgets(w.closest('.panel-wrapper'));

 d.dialog('close');

 },

 'Close':function(){

 d.dialog('close');

 }

 }

 });

 $('select').inlinemultiselect({

 'separator':', ',

 'endSeparator':' and '

 });

 });

}

You can see that this is very similar to the panel visibility code. The main difference
is that the panel code calls the server directly in order to save the page IDs, while this
code records the page IDs in the widget data contained in the panel and then calls
updateWidgets() to record it.

www.eBookTM.Com

Chapter 11

[291]

On the front-end, the code is just as simple as the panel code. Add the highlighted
lines to /ww.plugins/panels/plugin.php:

 if(isset($widget->disabled) && $widget->disabled)continue;

 if(isset($widget->visibility)

 && count($widget->visibility)){

 if(!in_array($GLOBALS['PAGEDATA']->id,

 $widget->visibility))continue;

 }

 if(isset($widget->header_visibility)

 && $widget->header_visibility)

 $h.='<h4 class="panel-widget-header '

 .preg_replace('/[^a-z0-9A-Z\-]/','',$widget->name)

 .'">'.htmlspecialchars($widget->name).'</h4>';

It's the same idea as with panels—we check to see if a list of page IDs is recorded.
If there is and the current page is not in the list, then we don't go any further in the
loop with this widget.

Summary
In this chapter, we enhanced and completed the panels and widgets system such
that you could disable them, choose which pages they were visible on, and
customize the widgets.

In the inal chapter, we will build an installer for the CMS.

www.eBookTM.Com

